

 Navigation

 	
 index

 	
 next |

 	Couchbase Live London (2014) 1.0 documentation

Notes from Couchbase Live London (2014)

Contents:

	Opening Keynote: Amadeus Case Study
	Determining Flight Availability

	Features they’re after

	Opening Keynote: Viber Case Study
	Original Architecture

	Current Architecture

	Migration to Couchbase

	Anatomy of a Couchbase App
	How it works

	Scaling

	The Art & Science of Document Modelling
	Basics of Data in Couchbase

	Key Selection

	Couchbase Server Unplugged
	Why do we need Couchbase Server?

	What is Couchbase Server?

	N1QL

	Common use cases

	Node.js & Couchbase - Full Stack JSON

	A N1QL for every Query
	What is N1QL?

	N1QL Basics

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

Opening Keynote: Amadeus Case Study

Session Information

Keynote session by Dietmar Fauser, VP, Architecture, Quality
& Governance, Amadeus, 9:45am, 2nd April 2014.

Amadeus sits between travel providers and travels agents, linking up
travel agents with hotels, flights, etc. The main users of their
systems are travel agents (both traditional agencies such as Thomson
and online agencies like Expedia).

They also work on tools for airlines and hotels for managing
inventory. 800 million passengers will travel with flights arranged
by Amadeus in 2015.

Handle up to 24,000 operations per second, with a 0.5 second response
time, dealing in petabytes of data.

Were previously using Oracle in a non-relational manner (serialised
blobs of data). Prototyped 2 projects in Couchbase in 2013.

Determining Flight Availability

Given a particular flight, date and the point of sale, they need to
be able to determine availability (point of sale is relevant because
of currency exchange rates - you might want to prioritise different
regions depending on current exhcange rates).

When communicating with external airline inventories, queries are
traditionally cached. This leads to problems:

	Non-competitive prices (fresher data might give cheaper seats);

	Rejecting bookings which could actually be fulfilled.

Customers can shift transactions to other brokers if results from
Amadeus aren’t as good as a competitor’s results. Stale caches
therefore cost money.

Prior to Couchbase, they had a memcached layer sitting on top of a
MySQL farm sitting on top of Oracle. Scaling any of these layers was
a major undertaking. The application layer currently has to know
about the server topology, which makes scaling it or changing it
impractical. memcached outages are very disruptive, since all load
then goes to MySQL, which can’t handle it.

With Couchbase, they lose the MySQL and memcached layers, and just
have 30 Couchbase servers, with 1TB of RAM each.

During node failover, they read from replicas (for their case,
reading dirty data is better than no data) - this was a feature they
requested, that came in Couchbase 2.1.0.

They operate a single data centre, with 6 different isolated zones -
they can lose one zone without losing data.

They’re using Couchbase for a distributed session store, sharing
users’ session information across the tier of apllication servers.

Features they’re after

	Partial bucket replication;

	A better security model;

	The ability to audit transactions.

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

Opening Keynote: Viber Case Study

Session Information

Keynote session by Amir Ish-Shalom, System Architect,
Viber, 10:15pm, 2nd April 2014.

Viber originated three years ago as an iPhone app for VOIP, they’ve
now got text messaging, video chat, and a version for
Android. Starting to make money by allowing calls to landlines and
mobiles, and selling sticker packages.

They have over 300 million users, growing at 1 million a
day. Billions of messages are send every month, and billions of
minutes of voice.

Original Architecture

Viber originated with a tier of application servers, backed by an
in-house, in-memory database.

In 2011, they used MongoDB, including a very early version of
MongoDB’s sharding support. They then added a Redis cache (purely in
memory) in front of MongoDB. Eventually, they had performance
problems with MongoDB, so they became more and more reliant on
Redis. Redis had no support for sharding, so they wrote their own
frontend which dealt with sharding. MongoDB continued to be a problem
for performance, so they moved some data to be solely in Redis (circa
2013).

Things that went well:

	It got them through an abrupt growth path;

	They never lost data in MongoDB;

	Redis has reliably good performance.

Things that went badly:

	MongoDB could only managed tens of thousands of operations per
second, they needed hundreds of thousands. Large datasets cause
MongoDB problems.

	MongoDB does not scale well with many application servers (it
handles each connection in a separate thread, which ends up being
very wasteful of CPU and memory).

	The inhouse sharding frontend for Redis wasn’t easily scalable (it
could only handle increasing the number of servers by factors of
two).

They ended up with:

	1 MongoDB cluster with 150 servers (master and two slaves)

	3 Redis clusters with a total of around 150 servers.

Current Architecture

Needs:

	Very high performance - up to a million operations per second;

	Handling very large data sets;

	Elasticity without performance disruption;

	Using AWS, so node failures are common - they need a system that
can handle node failures without service disruption;

	Backup handling;

	High availability;

	Good monitoring capabilities;

	They’d prefer a single database - providing both a caching layer
and a persistence layer.

They’ve opted for small nodes (about 60GB RAM per node). They have
separate nodes for different types of operations (reads vs sets vs
appends). They have at most 60 nodes per cluster. They use XDCR to
backup to a backup cluster. All views are done on their backup
clusters, not on production clusters. Backups are then sent to disk,
and sent to S3.

They currently have over 400 application servers, along with:

	7 Couchbase clusters, each with up to 60 nodes;

	0-2 replicas, XDCR and external backups;

	They have a total of 150 Couchbase servers (less than half the
number needed with MongoDB and Redis).

Their busy read clusters are handling hundreds of thousands of reads
per second, on 10 node clusters.

Migration to Couchbase

Migration was done live, with no downtime, and with no data loss, and
with data remaining consistent.

5 clusters are migrated, 1 is in progress, and 1 remains to be
done. MongoDB is now retired, so there’s just 2 Redis clusters
remaining.

They’re interested in Couchbase 2.5 for rack awareness of replicas
(since they’re using AWS, they need to make sure their replicas
aren’t in the same availability zones as the active copies).

They’re looking to use Elastic Search using XDCR for full text
search.

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

Anatomy of a Couchbase App

Session Information

Track 2 session by Matthew Revell & J Chris Anderson,
Couchbase, 11:05am, 2nd April 2014.

J Chris Anderson demonstrated a web app somewhat similar to Snapchat, which:

	uses Couchbase for asset storage and keyspace management;

	doesn’t require complex queries - build your Couchbase key using
predictable key patterns;

	uses Couchbase to provide ordering, immutable keys and expiry;

	is built with Express, React.js and PubNub.

How it works

	The app asks the server for a message ID;

	The server hands them out sequentially and atomically;

	The app saves images and audio to URLs based on the message ID;

	Optionally allow messages to self-destruct.

The latency sensitive path just uses key-value operations (getting
documents that are referred to by other documents can be done in a
reasonable timeframe using two round-trips). The messages in a room
are just the messages from 0 to the current message number, so the
app just does a bunch of sequential gets.

Scaling

Since there’s not a lot of logic on the application server (it’s
effectively stateless), we can scale by adding machines and balancing
load between machines.

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

The Art & Science of Document Modelling

Session Information

Track 2 session by Jasdeep Jaitla, Technical Evangelist,
Couchbase, 11:50am, 2nd April 2014.

Basics of Data in Couchbase

There are three types of keys in Couchbase:

	Deterministic - human readable;

	Random - e.g. UUID;

	Pseudo-random - e.g. user-<UUID> - human-readable random keys, but
with the ability to figure out what sort of document it’s going to
be based on the key.

There are three types of data in Couchbase:

	Primitive data types (e.g. 98.6 or true);

	JSON;

	Binary.

Each key-value pair has two components - metadata and the
document. The metadata contains the key, the revision, some flags,
expiration information, and type information. The metadata is 56
bytes, plus however many bytes the key is. Metadata is kept in RAM,
to allow very quick responses in error conditions (e.g. calling
add on a key that already exists).

Keys are partitioned into vBuckets by taking a crc32 hash of the
key, and picking an appropriate vBucket. vBuckets are distributed
across clusters, and rebalancing is the process of moving
vBuckets. crc32 evenly distributes keys across vBuckets, and
vBuckets are distributed evenly across servers.

Key Selection

Deterministic keys make fetching data very straightforward. For
example - if users log in using email address, the email address
makes a good key. However - what if users can also log in with a
username? We can work around that by adding a lookup-key - if the
username is dominic, and the email is dominic@example.com, we
add two documents at sign up:

	dominic with the value dominic@example.com;

	dominic@example.com, which contains the account information.

Since read operations are fairly quick, we can just use two
round-trips.

An alternative to this approach is looking up usernames with a view,
which gives you the user record directly from the username. This will
involve asking each node in the Couchbase cluster (since each node
has the subset of the view for the records which are active on that
node).

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

Couchbase Server Unplugged

Session Information

Track 1 session by Ravi Mayuram, VP of Engineering,
Couchbase, 1:15pm, 2nd April 2014.

Why do we need Couchbase Server?

Tape is dead, disk is tape, flash is disk, RAM locality is King.

Jim Gray (2006)

As memory gets cheaper and cheaper, keeping data in RAM becomes a
more attractive and practical proposition.

Increasingly data is represented as JSON at application boundaries.

What is Couchbase Server?

Couchbase Server allows for Layer Consolidation - one layer
subsumes another, both layers benefit and share common services (as
demonstrated in the keynotes from Viber and
Amadeus) having fewer layers reduces the logic
needed to keep them in sync.

Couchbase is a distributed, master-less, shared-nothing,
memory-first, auto-sharded document databases that is built to
perform at web-scale.

Couchbase is a document-database paired with a cache (i.e. we keep
stuff in memory).

N1QL

N1QL (/ˈnɪkəl/) is an expressive, SQL-like query languages. The “N1”
comes from non-first normal form [http://en.wikipedia.org/wiki/First_normal_form], meaning we relax
the requirements of first normal form, allowing for duplication of
data. See my notes on the N1QL session.

Common use cases

	Social gaming

	Ad targeting

	User profile store

	Session store

	Content and metadata store

	High availability cache

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

Node.js & Couchbase - Full Stack JSON

Session Information

Track 2 session by Philipp Fehre, Technical Evangelist,
Couchbase, 2:45pm, 2nd April 2014.

To make a game API, you need to make things fast, and you need to be
able to scale. Most players won’t pay you anything, so you need to be
resource-efficient too, so that you can still make money.

node.js has an event-driven programming model. Most node.js apps have
little state, and can be scaled by adding application servers (with
appropriate load balancing). You then need a data store that can be
talked to by multiple application servers.

Couchbase recognises JSON as a datatype, allowing us to do more
complex queries on JSON values using views and map/reduce.

Note

Much of this session was demonstrating code, so there aren’t a lot
of notes.

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Couchbase Live London (2014) 1.0 documentation

A N1QL for every Query

Session Information

Track 2 session by Ilam Siva, Senior Product Manager,
Couchbase, 3:45pm, 2nd April 2014.

The real world isn’t all structured and ordered.

In the traditional (relational) data model, you need to fit the data
you have into the model you’ve decided on. In the rich data model,
your data is varied, and your schema may vary [1]. In the
traditional (relational) data model, data must all fit into the same
shape, and changing that shape can be costly. In the rich
(document-oriented) data model, data can fit into a multitude of
shapes, and those shapes can change easily.

SQL works well for the traditional data model, but not so well for
the rich data model, where schemas are shifting.

What is N1QL?

N1QL embraces the JSON document model, with SQL-like syntax to ease
transition. It works with structured, semi-structured, and
unstructured data. JSON is fully supported, and more formats may be
supported in future.

N1QL supports aggregations, filtering and transformations. You can,
for example, transform one array into another array. In SQL when you
run an operation, you get a result set consisting of a series of
rows. In N1QL, you operate on JSON documents, and the result of your
operation is another JSON document.

The “N1” comes from non-first normal form [http://en.wikipedia.org/wiki/First_normal_form] - we have
multivalued attributes and nested objects.

Whilst views are fairly heavy weight, N1QL allows you to have high
performance declarative indexes which are lighter weight.

N1QL Basics

A query in N1QL has three parts to it:

	SELECT - what parts of each document do you want?

	FROM - what data bucket or data store do you want it from?

	WHERE - what conditions must be met for a document to be
returned?

The output is in the form of a JSON document.

N1QL supports string operations such as concatenation and string
matching (including support for wildcards).

N1QL also supports GROUP BY, ORDER BY, as well as pagination
constructs such as LIMIT and OFFSET. Other functions such as
AVG, ROUND, TRUNC, SUM, MIN and MAX [2].

N1QL handles missing values differently from NULL values (missing
means that attribute doesn’t exist in the document, NULL that it
does exist, but is NULL). You can select between these two
conditions using IS MISSING and IS NULL.

N1QL also allows you to join data between multiple buckets.

	[1]	Ilam said he doesn’t like the term schemaless, since data in
NoSQL databases still have schemas, it’s just that they’re
flexible, and may vary between values.

	[2]	Ilam mentioned that a commonly asked question was whether
user-defined functions are supported. This feature is planned,
but not currently available.

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Couchbase Live London (2014) 1.0 documentation

Index

 Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

 _static/file.png

_static/plus.png

_static/comment-close.png

_static/down.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Couchbase Live London (2014) 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Dominic Rodger.
 Created using Sphinx 1.2.

_static/down-pressed.png

_static/minus.png

_static/up.png

